История вопроса

 

Те лабиринтные колонки, которые я делаю в настоящее время – появились в 2012 году, а начинал я с электростатов. Забавно тогда получилось. Я сидел на работе и почитывая публикации в яндекс-маркете, наткнулся на объявление о продаже электростатических наушников Stax. Я тогда уже знал, что электростатические наушники Stax – одни из лучших в мире по качеству звучания. Решил почитать, что пишут о их старшей модели.

До сих пор помню те несколько сток про этот шедевр: «Бесспорно эта модель лучшая на всем российском рынке, а недостаток у нее только один – цена. Так как аналогов у этой модели наушников реально нет, то фирма Stax может себе позволить ставить на нее такую цену, какую считает нужной».

Эта статья меня очень зацепила и возбудила во мне желание зарабатывать и «статический» энтузиазм. В электростатическом принципе преобразования нет ничего сверхестественного. Там легчайшая мембрана двигается между двумя металлическими перфорированными электродами. После этого я построил несколько моделей электростатических излучателей, но об этом я расскажу в отдельной статье. Сейчас я полностью ушел в обычные динамики и лабиринтные корпуса, но к электростатам рассчитываю вернуться через какое-то время. Уж больно они мне понравились по звучанию и потенциал у них очень высокий.

Именно электростатические наушники «Stax» привели меня в аудио индустрию, хотя я их ни разу не слышал и не видел живьём.

Но те, кто их слышал, написали отзывы, которые и сподвигли меня на эксперименты в акустике и чуть позже к серийному выпуску лабиринтных АС. Именно электростаты произвели на меня за 15 лет до этого ВАУ эффект, который я не могу забыть.

 

Краткое описание

 

Именно электростаты, позволяют любому энтузиасту «на коленке» изготовить громкоговоритель Хай-Энд класса, из простейших материалов, таких как металлический лист и плёнка, а не дорогущие кастомные динамики из Дании. Причем можно было это делать уже в лохматые годы, думаю, что хоть в 1920-е. Блин, дух захватывает!

Короче, электростаты это круто и доступно почти каждому. При этом, их ни у кого нет. Давайте попробуем понять, почему?

Принцип работы ЭС опирается на один единственный физический закон: электростатику. F=Q1*Q2/D^2. Мы создаём Q1 и меняем Q2 со звуковой частотой, просто подводя напряжение на обкладки, между которыми двигается заряженная мембрана. Пока всё просто.

Дальше, начинаем считать. Выходит, что для того, чтобы было более не менее какое-то давление, нужно заряжать плёнку до 5000 Вольт, и иметь киловольты на обкладках. Мурашки, они придут к вам от одного факта включенных электростатов, даже не нужно ставить музыку.

На самом деле все не так страшно. Киловольты на мембране, не страшнее чем электростатический разряд. Когда вас ощутимо бьёт статикой там может быть все 15 киловольт. Но ток то мизерный, поэтому вы до сих пор живы... Убить вас они не могут, если все сделано по уму, конечно. Привожу схему, которая показывает безопасность электростатов для человека:

 

Преимущества электростатов

 

Оно одно, зато какое: мембрана весит легче присоединенной массы воздуха! По сути мы толкаем воздух почти воздухом... Отсюда отсутствие искажений, и ровная АЧХ до огромных частот. По сути это абсолютно линейный широкополосный динамик без резонанса с полосой частот до 100 килогерц и выше. Воздух толкается не диффузором от катушки, а равномерно по всей поверхности. В электростатах нет подвеса обычного динамика с его нелинейностями и нет мод излучателя, потому что мембрана не имеет жесткости.

Недостатки есть, и такие же серьезные.

Во-первых, у электростатических излучателей очень низкая чувствительность. Громко из них играть не умеет ни один, кроме нескольких экспериментальных конструкций от двух самодельщиков в мире.

Во-вторых, так как у подвижной части (мембраны) практически нет массы и большая площадь поверхности, то электростатический излучатель нельзя поставить в закрытый ящик или фазоинвертор. Если это сделать, то резонансная частота его сильно повысится т.к. воздух внутри ящика будет работать упругой пружиной. Или, если без ящика не обойтись, то он будет ну очень большим...

Поэтому, для крупногабаритных электростатов, как правило, применяют открытое акустическое оформление – так называемый «опен-баффл». Опен-баффл это фактически тонкая рамка, в которую вставлен электростатический преобразователь, излучающий одинаково и вперед, и назад.

 

Проблемы электростатов

 

Ниже определенной частоты, зависящей от физических габаритов самого излучателя, оформление опен-баффл имеет довольно большие потери. Это происходит из-за акустического короткого замыкания открытой системы на низких частотах. Если приложить к этому невысокую чувствительность электростата и довольно острую диаграмму направленности, то получается, что наиболее разумно применять его начиная от частоты 150-300 Гц, но никак не ниже. Тогда и габариты его будут не очень велики и диаграмма направленности – достаточно широкой.

Хорошая идея – встроить электростатические излучатели в стену между комнатами, тогда мы получили бы акустическое оформление «бесконечный экран». По звуку это, наверное, было бы лучшим вариантом, но к большому сожалению встраивание мембран, излучающих одновременно в две комнаты не пригодно для применения в реальном жилище. Подобные опыты, кстати, ставились отдельными энтузиастами и всегда приводили к ВАУ результату.

У открытого акустического оформления опен-баффл есть основной недостаток, мизерные по уровню звукового давления низкие частоты. В реальных конструкциях электростатов категорически необходим «подпор» снизу.

Полагаю, что делать его никто не умеет, кроме меня. Я считаю, что низкочастотная секция должна быть сделана по такой же схеме, как и секция с электростатическим излучателем. Т.е. она должна быть открытой, дипольной и излучать одинаково вперед и назад. Это нужно для согласования характера излучения НЧ и СЧ/ВЧ секций по азимуту между полосами, чтобы ранние отражения не имели различной тембральной окраски у динамического низкочастотного и электростатического СЧ/ВЧ звеньев АС.

Расскажу про свой «электростатический» опыт... Как я уже говорил, в аудио индустрию меня заманили электростатические наушники Stax-9 за 10.000 долларов. Виртуально впечатлившись сим девайсом я начал изучать вопрос электростатики что называется «вдоль и поперек». Мой вывод такой:

 

Состав электростатической системы

 

1) Мембрана. В большинстве случаев она не металлическая, а пластиковая. Не проводящая, и даже не металлизированная, а полупроводящая. Проводящей ее сделать можно, играть она будет, но с искажениями в 10 раз больше. Не 0.01%, а 0.1%.

2) Обкладки. Делаются из перфорированного металла.

3) Источник поляризации. Или заряда мембраны, должен иметь потенциал до 5000 В и выше. Делается он по схеме умножителя напряжения. Для безопасности источник высокого напряжения подключен к мембране через резистор номиналом на менее 1 МОм. Через резистор такого номинала даже напряжение в 5000 вольт создает ток не более 5 мА. Такой ток безопасен и может только дёрнуть, но не убить.

4) Звуковой трансформатор. Рабочее напряжение звуковой частоты на обкладках должно примерно равняться поляризующему напряжению, т.е. быть в пределах 1500-5000 В. Идеальный звуковой трансформатор – высоковольтный, намотанный с секционированием на специальном звуковом железе. Такие трансформаторы – экзотика и для экспериментов я применял обычные сетевые трансформаторы, включенные «наоборот».

Трансформатор, по-хорошему, делается специальным, чтобы у электростата было как можно меньше искажений. Но это не ракетостроение, просто требует усидчивости и соблюдение правил высоковольтного монтажа. Кому такой транс мотать лениво, можете купить за 200 долларов на 1 канал, сами понимаете где.

В качестве трансформатора начального уровня – пойдет обычный сетевой, чем больше габаритами, тем лучше, с коэффициентом трансформации около 30. Можно попробовать применить обычный силовой (накальный) трансформатор на 6 вольт из 220. Как супер бюджетный вариант, можно использовать 6 В секцию от ТВС-180.

В самом начале я экспериментировал с накальным мини трансформатором на 6 Вольт, мощностью 1Вт. Все работало, но совсем не громко. На электростатический излучатель пищалку такого хватит.

5) Усилитель. Обычный, желательно чтобы он мог работать на емкостную нагрузку порядка нескольких микрофарад, так как электростатический излучатель по определению – это емкость. Собственная ёмкость мембраны около 1 нФ, за трансформатором видна как 1 мкФ. Ориентировочно.

6) Кабинет. Можно установить электростатический излучатель в оформление опен-баффл. Сам излучатель делать в виде плоской вертикальной «доски». Расширять диапазон рабочих частот вниз можно достроив вертикальный излучатель «крыльями» опен-баффла, с двух сторон, настолько широкими, насколько сможете себе позволить. Можно сделать корпус складным или на петлях, в виде ширмы.

 

Всё описанное выше, с конструктивной точки зрения – выглядит просто, и это просто и есть на самом деле. При практической реализации «не кривыми» руками это все работает, но есть некоторые нюансы. Чтобы в них ориентироваться, одной моей статьи мало, для понимания причинно-следственных связей в электростато строении нужно перелопатить сотни страниц разнообразных форумов. Часть информации, на которых не соответствует действительности, естественно.

Я расскажу про свой незавершенный электростатический путь, который я думаю все-таки: удлинить, углубить и расширить...

 

Первый макет

 

Для первого опыта я решил построить маленький излучатель. Долго не мог найти подходящие детали для обкладок. Что-то подходящее нашел на строительном рынке. Это были «ступеньки», с очень плотной перфорацией, примерно такой, как у промышленных электростатических колонок. Плёнку взял бытовую, для продуктов «стрейч». Натер ее графитом. Собрал, включил... Работает. Тихо, но вполне ощутимо и даже приятно на слух.

Технология сборки макета моего электростатического излучателя такова:

 

  • Пленка растягивается на столе и закрепляется с помощью скотча;
  • Пленка натирается графитовым порошком с помощью ватного тампона, так, чтобы она приобрела равномерный серый цвет;
  • На обкладку из перфорированного металла, наклеивается рамка из 2 стороннего скотча. По рамке пускается проволочка, которая заводит на мембрану заряд.
  • К предварительно растянутой пленке на двусторонний скотч приклеивается перфорированная обкладка;
  • Потом переворачиваем всю конструкцию. Ко второй стороне стреч мембраны через двусторонний скотч приклеиваем вторую обкладку;
  • подключаем обкладки к выходу звукового трансформатора, а проволочку от мембраны к умножителю напряжения (генератору заряда).
  • Ко входу трансформатора подключаем усилитель... Слушаем, что получилось.

 

Проблема описанного макета – недолговечность. Для надежного и долговечного электростатического излучателя нужна пленка из другого пластика – не стреч. В него графитовый порошок так просто уже не натрешь, для его удержания на мембране нужен особый лак и так далее. Описанный макет можно слушать до тех пор, пока пленка не растянется и не начнет коротить на обкладки. После этого необходимо ее заменить. По практике срок службы описанной мембраны около месяца. После того как я наигрался с первым макетом, я решил сделать другой, побольше.

 

Ссылки по теме

 

 

Опубликовано:
aovox
Авторский электростатический излучатель
Авторский электростатический излучатель

Создано:

Автор

Разработка сайта webtraktor